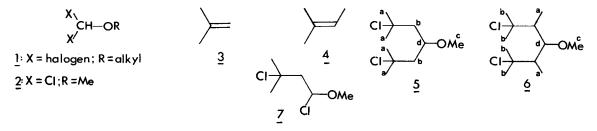
Tetrahedron Letters No. 1, pp 81 - 84, 1978.

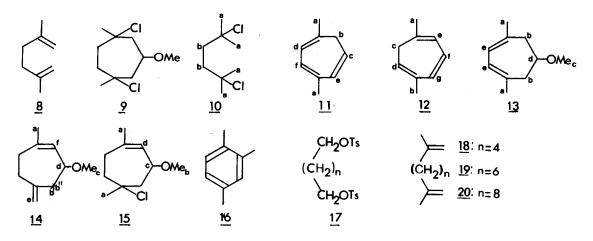
Pergamon Press.

ELECTROPHILIC ADDITION OF DICHLOROMETHYLMETHYL ETHER TO DIENES. A NEW ANNULATING PROCEDURE¹⁾

C.F. Garbers^{*}, H.S.C. Spies and Hester E. Visagie²⁾ Department of Chemistry, University of Stellenbosch, South Africa

and

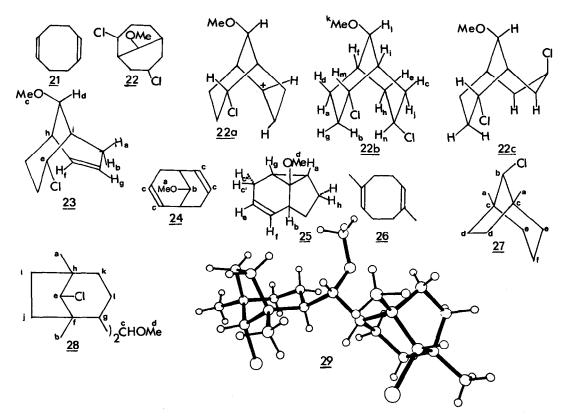

J.C.A. Boeyens and A.A. Chalmers


National Chemical Research Laboratory, P.O. Box 395, Pretoria 0001, South Africa

(Received in UK 19 October 1977; accepted for publication 11 November 1977)

Dihalomethylethers (1) find application in a variety of reactions e.g. the formylation of aromatic systems,³⁾ the preparation of acid halides,⁴⁾ the synthesis of orthoformic acid derivatives,⁵⁾ and the generation of cyclopropylmethyl ethers via methoxycarbene.⁶⁾ We have attempted the formylation with dichloromethylmethyl ether (2) of methylpropene (3) and 2-methylbut-2-ene (4). In both instances the reaction products (5) (92%; δ_a 1.63,s; δ_b 2.0,d; δ_c 3.31,s; and δ_d 3.73, tt) and (6) (34%; δ_a 1.03,d; δ_b 1.60,s; δ_c 3.35,s; δ_d 3.91,br.dd) respectively originated from the condensation, irrespective of the relative concentrations of the reactants used in the Lewis acid catalysed condensation (SnCl₄; CH₂Cl₂).⁷⁾ This observation indicated chloro-ether (7) to be more reactive than ether (2) in electrophilic addition reactions to olefins and suggested the use of dihalomethylmethyl ethers in the construction of carbocyclic ringsystems from suitable dienes.

Diene (8) was indeed successfully converted into cycloheptane derivatives by Lewis acid catalysed condensation with ether (2) (SnCl₄; solvent: CH₂Cl₂ or AcOMe). The crude product (8) was treated with base (^tBuOK/DMSO; 15h) to give (i) 19% of the dimethylcycloheptatrienes (11) (δ_{a} ~1.98; δ_{b} 2.30, br.d; δ_{c} 5.34, m, J_{ce} 9, J_{bc} 7; δ_{d} 5.87, br.d, J_{df} ~6.5; δ_{e} 5.97, br.d; δ_{f} 6.3, br.d) and (12) (δ_{a} 1.84; δ_{b} 1.97, d, J_{bd} ~1.5; δ_{c} 2.24, br.d, J_{cd} 7; δ_{d} 5.14, br.t; δ_{e} ~5.87, m; δ_{f} &g~6.36, m); (ii) 22% of the heptadienylethers (13) (δ_{a} 1.82; δ_{b} ~2.37, m; δ_{c} 3.33; δ_{d} ~3.60, m; δ_{e} 5.56, br.s) and (14) (δ_{a} 1.76, dd, J_{af} = J_{ad} =1; δ_{b} , 2.27, dd, $J_{b'b'}$ 13, $J_{b'd}$ 9; $\delta_{b'}$ 2.61, dd, $J_{b''d}$ 3.5; δ_{c} 3.33; δ_{d} 3.76, m, J_{df} 3.5; δ_{e} 4.76, m; δ_{f} 5.56, m), as well as 9% of the cycloheptenylether (15) (δ_{a} ~1.71; δ_{b} 3.31; δ_{c} ~3.67, m; δ_{d} ~5.47, m). ⁹ In some experiments the presence of small quantities of 1,2,4-trimethylbenzene was observed. ¹⁰ Both ethers (13) and (14) were converted into dimethylcycloheptatrienes by acid catalysed (p-TsOH,



 $CHCl_3, \Delta$) methanol elimination. Cycloheptatriene derivatives have previously been obtained mostly by ring enlargement reactions of aromatic compounds with carbenoid reagents.¹¹⁾ The attempted conversion into macrocyclic compounds¹²⁾ of dienes (18)-(20)¹³⁾ by condensation with dichloro-ether (2) failed. The dienes (18)-(20) were conveniently prepared from the corresponding tosylates (17) (n=2, 4 and 8 respectively)¹³⁾.

The dichloro-ether (2) was successfully condensed with the cyclic diene (21) to yield a mixture of stereo-isomeric dichloro-9-methoxybicyclo [3.3.1] nonanes e.g. (22).14) The major isomer (40%) was isolated severally and according to pmr studies originated from a trans-addition to the first double bond of the 1,5-diene system of cyclo-octadiene (21), followed by an intramolecular attack on the second double bond to form the intermediate carbonium ion (22a), which rearranged before reaction with the chloride ion to yield the major isomer (22b) $\left[\delta_{a}^{1.55,J}_{ab}6,\right]$ $J_{ad} = 13.3, J_{af}^2, J_{ag}^{-1}; \delta_b 1.74, J_{bd} 12, J_{bg} = 13, J_{bm} 12; \delta_c 1.84, J_{cj} = 14, J_{cm}^{-1}, J_{cn} 12, J_{ci}^{-1}; \delta_d^{-1}.96, J_{df}^{-5}, J_{dg}$ 7; $\delta_{e}^{2.02, J}_{ef}^{7}$; $\delta_{h}^{2.34, J}_{hj}^{12, 12}$; $\delta_{f}^{2.09, J}_{fh}^{12.5; J}_{f1}^{12.3; \delta}_{f2.34, J}^{2.34, J}_{hj}^{12, J}_{hn}^{16; \delta}_{i}^{2.41, J}_{ij}^{12, J}_{$ equatorial positions. The chemical reactivity of this isomer supports the structural assign-Isomer (22b) readily undergoes elimination [cf. conformer (22c)] $1^{(5)}$ of one mole HCl/mole ment. adduct on treatment with base (^tBuOK/DMSO, 50°, 1h) to yield the chloroderivative (23)($\delta_{g}^{2.24}$, $J_{ab}^{18}, J_{ai}^{7}, 2, J_{ag}^{3}, J_{af}^{-1.5}; \delta_{b}^{2}, 68, J_{bg}^{3}, J_{bf}^{-1.5}; \delta_{c}^{3}, 33; \delta_{d}^{3}, 61, J_{di}^{2}J_{dh}^{3}, \delta_{c}^{4}, 48, J^{4}, 8\&^{8}, \delta_{f}^{5}, 556, J_{fg}^{9}, 8, J_{fh}^{-6}, 68; \delta_{g}^{5}, 83).$ Conversion of the latter into the diene (24) ($\delta_{a}^{3}, 42, \delta_{b}^{-3}, 48, f_{c}^{-1}, 56, f_{c}^{-1}$ $\delta_c 5.35-5.95$) requires much more forcing conditions (^tBuOK/DMSO, 110^o, 65h), in agreement with the assigned structure (23). In addition to bicyclic diene (24), the tricyclic ether (25) was also obtained as a minor product (ratio 10:1) on treatment of the crude condensation product under forcing conditions with excess base (^tBuOK/DMSO; 110^o, 57h). The structural assignment of compound (25) $(\delta_{a}1.07, J_{ag}12, J_{ah}6.5; \delta_{b}2.86; \delta_{c'\&c''}3.15; \delta_{d}3.28, s; \delta_{e}, br.dd, J_{ef}8.2; J_{ec}, 6, br.dd, J_{ef}8.2; J_{ef}$ $J_{be} \sim 1$; $\delta_f 6.45$, m, $J_{bf} 7$, $J_{fc''} 2.2$) is based mainly on pmr and ¹³C nmr spectroscopy (cf Table). Ether (25) does not originate from either compounds (22b) or (23).

The condensation of ether (2) with dimethylcyclo-octadiene (26) $(\text{SnCl}_4; \text{CH}_2\text{Cl}_2; -80^\circ)$ proceeds differently to yield the bicyclo-octane derivative (27) (9%; $\delta_a 0.97$; $\delta_b 3.52$, br.s) and the ether (28) (30%; m.p. 136.5°; $\delta_a 0.97$; $\delta_b 1.03$; $\delta_c 3.25$, m; $\delta_a 3.36$; $\delta_e 3.51$, br.s). For ¹³C nmr - see Table. The stereo-isomerism of compound (28) was determined by X-ray crystallography cf.

formula (29). The identity of chloride (27) as the hydrochloric acid addition product of diene (26), is in agreement with the recent finding of Whitesell <u>et al</u>.¹⁷⁾ The bifunctional olefin (26), therefor effectively reacts like a mono-olefin.

TABLE

¹³C-Nuclear Magnetic Resonance Data Recorded at 20 MHz in CDCl₃ with Tetramethylsilane (δ 0) as Internal Standard. [Details: δ -values (multiplicity, assignment, ¹J)]

<u>Compound (23)</u>: 129.1(d,=CH-,157Hz); 127.3(d,=CH-,160Hz); 80.3(d,)CH-0,145Hz); 61.3(d,)CHC1, 152Hz); 55.7(q,OCH₃,141Hz); 38.6(d,-C-H,136Hz); 31.7(d,-C-H,135Hz); 28.3(t,)CH₂,132Hz); 27.1 (t,)CH₂,128Hz); and 24.2(t,)CH₂,132Hz)

<u>Compound (24)</u>: 130.3(d,=CH-,157Hz), 127.7(d,=CH-,157Hz); 125.5(d,=CH-,158Hz); 125.1(d,=CH-, 158Hz); 77.6(d, CH-0,143Hz); 55.9(q,-OCH₃,143Hz); 32.9(d,-C-H,132Hz); 32.1(t, CH₂,125Hz); 31.8 (d,-C-H,130Hz); and 26.0(t, CH₂,124Hz)

 $\frac{\text{Compound }(27)}{\text{(For the }^{13}\text{C spectrum of the corresponding tosylate, see ref. 17)}}; 31.5(t, 2C_e); 25.5(q, 2C_a); and 19.7(t, C_f).$

<u>Compound (28)</u>: 80.4(d,C_c, ~ 140Hz); 78.7(d,C_e, ~ 140Hz); 59.7(q,C_d,140Hz); 45.7(s,C_f); 43.1(d,C_g, 120Hz); 42.4(s,C_h); 33.4(t,C_i,135Hz); 32.2(t,C_j,125Hz); 30.0(t,C_k,130Hz); 25.1(q,C_a,125Hz); 24.3(q,C_h,125Hz); and 20.1(t,C_f, 130Hz)

REFERENCES AND FOOTNOTES

- 1. For a previous communication on electrophilic addition reactions of chloro-ethers to see C.F. Garbers and F. Scott, Tetrahedron Lett., 507 (1976).
- 2. Abstracted from part of Ph.D. thesis by H.E. Visagie, University of Stellenbosch (197
- e.g. F. Straus and H.J. Weber, Ann., <u>498</u>, 101 (1932); A. Rieche, H. Gross and E. Höf <u>93</u>, 88 (1960); H. Gross, A. Rieche, and G. Mathey, Ber., <u>96</u>, 308 (1963); A. Rieche, F and E. Höft, Org. Syntheses, <u>47</u>, 1 (1967).
- 4. A. Rieche and H. Gross, Ber., <u>92</u>, 83 (1959).
- 5. H. Gross and A. Rieche, Ber., <u>94</u>, 538 (1961).
- 6. U. Schöllkopf and J. Paust, Ber., <u>98</u>, 2221 (1965).
- 7. Yields were not optimised. All new compounds or known compounds prepared by new met gave satisfactory combustion analyses. The spectral properties of all compounds are accord with the assigned structures. Pmr spectra in CDCl₂. J values in Hz.
- 8. No attempts were made to isolate the addition product (9). However, the identificati compounds (11)-(15) infers the initial formation of the dichlorocycloheptane (9). The lation of dichloride (10) (δ_a 1.58,s; δ_b 1.94,s) from the condensation product suggests dehydrochlorination during the condensation of the formed chlorocycloheptanes.
- 9. In another experiment treatment of the condensation product with excess base (^tBuOK/I yielded the cycloheptatrienes (11) and (12) (30%), the ethers (13) and (14) (16%), bu the chloro-ether (15).
- The rearrangement of tropilidenes to benzene derivatives is known, cf. J.A. Berson as M.R. Wilcott, J. Amer. Chem. Soc., <u>88</u>, 2494 (1966).
- e.g. E. Müller, H. Kessler, H. Fricke and W. Kiedaisch, Ann., <u>675</u>, 63 (1964); J. Nish J. Furukawa, N. Kawabata, and T. Fiyita, Tetrahedron, <u>26</u>, 2229 (1970); S. Miyano, Y. Matsumoto, and H. Hasimoto, Chem. Commun., 364 (1975).
- For recent alternative approaches to macrocyclic ringsystems see E.J. Corey and P. He Tetrahedron Lett., 4091 (1975); M. Karpf and A.S. Dreiding, Helv., <u>59</u>, 1226 (1976);
 M. Baumann, W. Hoffmann, and N. Müller, Tetrahedron Lett., 3585 (1976); Yoshihiko It Takeo Saegusa, J. Org. Chem., <u>42</u>, 2326 (1977), and references cited therein.
- G.H. Posner, Organic Reactions, <u>22</u>, 253 (1975); C.F. Garbers, J.A. Steenkamp, and H.I Visagie, Tetrahedron Lett., 3753 (1975).
- 14. Total yield of condensation products: 32 %. The nature and stereochemistry of the of products are presently being investigated. Stereochemistry of ether (22b) at C-9 und
- 15. We thank Prof. F. Bohlmann, Technical University, Berlin, for kindly recording the 2' pmr spectrum of ether (22b) in CDCl_3 and C_6D_6 , and for extensive spin decoupling exp. The quoted δ -values were obtained with CDCl_3 as solvent.
- 16. J.A. Peters, J.M. van der Toorn, and H. van Bekkum, Tetrahedron, <u>31</u>, 2273 (1975), and ferences cited therein.
- 17. J.K. Whitesell, R.S. Mathews, and P.A. Solomon, Tetrahedron Lett., 1549 (1976).